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The stability of tensile deformation of 
single ductile fibre-ductile matrix 
composites with weak interfaces 
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The embedded molybdenum fibre in a copper matrix composite was elongated apparently 
uniformly although the interface was so weak that necking in the fibre could not be sup- 
pressed by the matrix. To explain this result, a possible mechanism was suggested where 
suppression of necking in the fibre is caused by strain hardening of the composite as a 
whole and by an increment in strain rate in the cross-section where the fibre starts neck- 
ing, but the incremental deformation amount and the incremental strain rate of the 
cross-section are small. On the basis of this mechanism, and with the aid of Hart's 
criterion, a new instability approach to tensile behaviour of the composite is presented. 
It was found that the stability of the composite is determined mainly by the strain- 
hardening exponent of the composite, which is determined by the modified rule of 
mixtures. The present derived condition of instability of the composite is in good agree- 
ment with that proposed by Mileiko. 

1. Introduction 
Ductile fibres embedded in composites exhibit uni- 
form elongation [1-5]  or multiple necking [6-8], 
when the composites are elongated beyond efu, 
the strain at which fibres start necking and sub- 
sequently fail when tested alone. As a mechanism 
of uniform elongation, Piehler [4] has pointed out 
that necking of the fibres is arrested if the inter- 
facial bonding is strong enough, and composites 
can deform uniformly along the tensile axis be- 
yond efu. Mileiko [9] and Garmong and 
Thompson [10] applied the plastic instability ap- 
proach to the tensile behaviour of composites with 
strong interfacial bonding in order to predict the 
failure strain of composites on the assumption that 
composites can deform until necking begins in 
composites as a whole, and obtained good results. 
On the other hand, according to Venett et al. [6], 
Schoene and Scala [7], and the authors [8], 
multiple necking of fibres in composites requires 
no strong interfacial bonding. The multiple neck- 
ing of fibres, which of course yields high ductility 
in composites, has been explained by local work 
hardening of the matrix adjacent to the neck; 

i.e. the strengthened matrix can take load from the 
fibre until the toad-bearing capacity of the com- 
posite at this area exceeds the load-bearing 
capacity elsewhere [6 -8 ] .  

Although it has been supported that strong 
interfacial bonding is necessary for uniform 
elongation of the fibre, we have recently found 
that embedded fibres are able to be elongated 
apparently uniformly beyond efu even when the 
interfacial bonding is so weak that debonding 
possibly occurs at e~u at the interface [11]. We 
have also found by using the same weakly bonded 
composites [11] that the deformation parameters 
such as flow stress, internal stress, effective stress, 
strain-hardening exponent, stress exponent of 
strain rate, effective stress exponent of dislocation 
velocity and activation volume obey the simple or 
modified rule of mixtures even in the deformation 
stage III-(2) ranging from efu to the failure of the 
composite as a whole. Thus the inherent features 
of the fibre are conserved in stage III-(2), and the 
parameters of the composite are determined by 
the inherent parameters of the components. 
Previous work cannot explain why the fibre in the 
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weakly bonded composite could be elongated 
apparently uniformly beyond efu, maintaining its 
inherent features and when such a composite 
becomes instable. 

The aims of  the present paper are to discuss the 
stability of  weakly bonded composites on the basis 
of  the above observations. The observations were 
made using a single thick fibre composite with 
two components: an outer component of matrix 
and a core of fibre. Therefore no effects due to 
neighbouring fibres or due to small fibre strengh- 
ening of the matrix need enter the discussion [4, 
8, 12-14] .  

2. Experimental procedure 
The fibre and matrix employed were molybdenum 
wire of  500 #m diameter and copper, respectively. 
The preparation methods are described in the 
previous paper [11]. Two types of  fibre were em- 
ployed. The ultimate tensile strength, Ofu , and 
true strain at ultimate loading, etu, of one type 
(described as type A) were 1.03 GPa and 0.08, 
respectively. This type was the same as the fibre 
used in the previous work [I1] Another type 
(described as type B) had otu = 0.78GPa and 
efu = 0.16. 

Some specimens were annealed at 873K for 
1.8 x I03 sec. The other specimens were thermally 
cycled 100 times between 273 and 573 K to re- 
duce interfacial strength [11]. The annealed com- 
posites containing type A and B fibres are referred 
to in future as type A and B composites, and the 
thermally cycled and then annealed composites 
containing type A and B fibres are described as 
type TA and TB composites, respectively. The 

differences in efu and Otu between type A and TA 
and those between type B and TB fibres were neg- 
ligible. The only difference between type A and 
TA and that between type B and TB composites 
was interfacial shear strength [11]. The interfaces 
of all types were very weak in tension, being very 
near zero [11 ].  

The strain-hardening exponent and strain at 
ultimate loading were measured by a simple ten- 
sion test and the stress exponent of  strain rate by a 
strain-rate cycling test. 

3. Results 
3.1.  S t ra in-hardening  e x p o n e n t  
The strain-hardening exponent n, is deemed by 

n = bln o/bin e, (1) 

where ~r and e are true stress and true strain at o, 
respectively. The modified rule of mixtures of  the 
strain-hardening exponent of composites, ne, is 
given by [11] 

nc = nt ~ + nm(1--~)  (2) 

where the subscripts c, f and m refer to composite, 
fibre and matrix, respectively, and a = of Vf/(of Vt + 
o m Vm). By substituting into Equation 2 the sim- 
ultaneously values of o~ and om for e < efu, and 
the measured values of  am and the values of  o~ 
inferred by extrapolating the cr c -- Vf relation to 
Vf = 1.00 [11] for e > efu, we calculated a. By 
plotting the measured values of  n e against a, it was 
confirmed that the measured values of ne of  all 
specimens obeyed Equation 2 both in the ranges 
of e < efu and e > efu, as ascertained already [ 11 ]. 
The ne of type A and TA composites at e = 0.06 
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1.0 Figure ] The  measured values o f  n e o f  type  A 
and TA specimens plotted against c~ = afVf/ 
(ofVi + omVrn). 
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Figure 2 The measured values of l lm e of type 
B and TB specimens plotted against a = of Vf/ 

(ufVf + amVm). 

and 0.15 is typically shown in Fig. 1 in which ne 
varies linearly with varying a. 

3.2. Stress exponent  of  strain rate 
The stress exponent of  strain rate, m, is defined by 

m = a In c:/a In o (3) 

where b is the strain rate. The rule of mixtures of 
the stress exponent of  strain rate of the composite, 
m e , is given by [11] 

l / rn~ = o#rne + ( 1 - - o O / m  m (4) 

where e( = a f V f / ( a f V f  + am Vm) .  T h e  measured 
values of  1/m e also varied linearly as a function of 
c~, as typically shown in Fig. 2 where the measured 
values of  1ira e of type B and TB composites are 
plotted against cL 

3 . 3 .  Strain a t  u l t ima te  loading 
The measured values of  the strain at ultimate load- 
ing (necking strain) of  the composites, eeu, are 
shown in Fig. 3. 

4. Discussion 
In the previous paper [ 11 ], it was confirmed that, 
in the weakly bonded composites, the deformation 
parameters such as flow stress, internal stress and 
effective stress obey the simple rule of mixtures, 
and the strain-hardening exponent, stress exponent 
of  strain rate, effective stress exponent of dislo- 
Cation velocity and activation volume obey the 
modified rule of  mixtures not only for e < e~u, 
but also for e > efu. Thus the inherent nature of  
the fibre is conserved beyond e~u, and the defor- 
mation parameters of the composite are deter- 
mined by the inherent parameters of  fibre and 
matrix. This implies that the mechanical inter- 
action between the components or local inhomo- 
geneous deformation in the composite is of a small 
order. In fact, the embedded fibres exhibited 
apparently uniform elongation but no inhomo- 
geneous deformation such as multiple necking for 
e > efu.  

To explain the uniform elongation and high 
ductility of the embedded fibres, we must consider 

O e 

tO 

~ U  
r- 0.2 

1800 

@ 
a=& 

(a) 

o r~ TA i 
�9 n~ A 

A ECU TA a 
�9 ECU A -o  o 

I I 

0.5 ]9, 0 
v( 

(b) 

o n c  TB 
�9 n(~ B 

A Ecu TB 
�9 Ecu B 

2?~ 

�9 ~ o t l t  

I 

05 
v~ 

Figure 3 The measured values of eeu of type A, TA, 
B and TB specimens versus Vf. The measured values of 

1.0 n e of the same specimens are superimposed, to show 
the correlation ofn  e and eeu. 



two possible mechanisms. One is the constraint 
effect of  the matrix to arrest necking in the fibre 
[4]. This mechanism, however, should be disputed, 
since the interfacial strength of the present com- 
posites was very weak. Another possible mechan- 
ism, according to which we would like to develop 
a theory on the instability of composites, is that 
the suppression of necking in the fibre is caused by 
the strain hardening of the composite as a whole, 
and by an increment in strain rate in the cross- 
section where the fibre starts necking, when the 
composite is elongated to efu. Judging from the 
experimental results that the deformation in the 
composite, to a first approximation, proceeds 
homogeneously for e >  efu, the incremental de- 
formation amount of the cross-section where the 
fibre starts necking is small, and the development 
of the necking in the fibre is inhibited at once. In 
other words, at e = efu, a small portion of the 
length of the specimen has a cross-section that 
differs from the cross-section of the remainder by 
a small amount, and the loss of  load bearing 
capacity due to necking in the fibre is compen- 
sated for at once by the strain hardening of the 
fibre and matrix and the increment in strain rate. 
However, the deformation amount at a cross- 
section where the fibre starts necking is so small 
that the fibre is seen to deform apparently 
uniformly. 

As the interaction between the components is 
possibly negligible for e > efu [11], the applied 
load Pc on the composites is given by 

Pc = afar + anaAm, (5) 

where A is the cross-sectional area at any distance 
l. Since Equation 5 must hold simultaneously at 
all points l, the variation of Pc as a function of l 
must be zero. Thus 

0 = dPcldl = As(da f /d l  ) + as(dAf/dl  ) 

+ Ara(dora/dl) + am(dAra/dl ). (6) 

Also, da/dl is given by 

daldl = (ao/ae)(de/dl) + (aa/a~)(dk/dl). (7) 

We also need the relationships 

aa/ae = (a/e)(ain a/aln e) = %/e  (8) 

aa/ak = @/k)(ah~ a/aln k) = a/rnk (9) 

and 

dA Idl = -- A (de~d/). (10) 

Substituting Equations 7 to 10 into Equation 6, 
we have 

dPc/dl = A f  {(afnf /ef)(des/dO 

+ (1/~) (af /mO (d~f/d/)} 

+ A m  {(amnra/era) (de-m/d/) 

+ (1/~ra) (am/ram) (d~m/dl) } 

+ (-- a fAf)(de~/dl)  + (--araAra) dem/d/) = 0. 

(11) 

Judging from the experimental results, the fibre 
and the matrix are, to a first approximation, sub- 
jected to the same strain and strain rate, and the 
volume fraction of fibre remains constant at any l. 
Then we put 

ef = era = e (12) 

es  = era = e ( 1 3 )  

Asl (Af  + Am) = Vf (14) 

A m / ( A  f + A m )  + V m. (15) 

Substituting Equations 12 to 15 into Equation 11, 
we have 

{(ns of Vf + nmO m Vm)/e -- (a s Vf + 

+ am Vm)} (de~dO + ( I / i )  (asVs/mf + 

+ a m Vm/mra)(de/dl )  = 0. (16) 

In order to know whether or not the composite 
becomes unstable at efu, we apply the stable cri- 
terion of Hart [15] to the composite 

(dAe/dAe)pc ~< 0 (17) 

where A e is the cross-sectional area of  composite, 
and Ac is dAe/dt .  To combine Equation 17 with 
Equation 16, we obtain dAe]dA c as follows, ~ and 
de are given by 

= -- Ar iA  ~ (18) 

and 

de = - - d A J A r  (19) 

respectively. By modifying Equation 18, we have 

d~ = ( - -AcdA  c + AcdAc)/A~. (20) 

Combining Equation 18 to 20, we have 

~c /dAr  = (db--kde)/de = de /de - - e  (21) 

Combining Equation 16 with Equation 21, we 
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At e = e l .  = n f (<nm) ,  (d.zie/dAe)pe is negative, 
indicating that the composite is stable at the strain 
at which necking would occur in the fibre when 
tested separately. 

The strain at which the composite becomes un- 
stable, %, ,  may be calculated by setting (dAe/ 
dAc)p c = 0, as 

nf of Vf + nm om Vra 
ecu = 

(If Wf + O m V m 

x (1/ [1--(~ + (~ Vm[mm) ] + O'm Vm) 

= n t a + n m ( 1  - - a )  (23) 

I - -  + 

According to Equation 4, a[mf + (1 -- a)/mm is 
equal to lime, which is smaller than 0.032 for the 
present composites as typically shown in Fig. 2. 
Therefore Equation 23 is reduced to 

% ,  = nfa  + nm(1 -- c0 (24) 

The %u given by Equation 24 is the same as nc 
given by Equation 2. In other words, eeu is, to a 
first approximation, determined by the modified 
rule of  mixtures given for no. 

To examine Equation 24, we measured the n e 
value in the deformation stage prior to necking 
(denoted n'c in future) and compared them with 
the measured values of  %u. Experimentally we 
measured the n c by using the equation n e = 
In (o2/ot)/ln [(%u -- 0.02)/(ecu -- 0.04)] where o2 
and el are true stresses of the composite at e = 
%u - 0.02 and ecu -- 0.04, respectively. The 
measured values of  n'e were superimposed in Fig. 3. 
The measured values of n' c were in good agree- 
ment with those of  %,  with the exception of the 
range of small Vt and matrix. The discrepancy 
between n'c and %u in the sample_s with small Vf 
and matrix could be attributed to the fact that the 
n m value was constantly 0.55 for e < 0.40 but 
decreased with increasing strain for e > 0 . 4 0 .  
Although the reason why n m decreased for e > 0.40 
was not known in this work, we can conclude 
that n' e is in good agreement with %, for the 
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range of constant nra, excluding the range of 
e > 0.40 where nra varied. 

Next we will show that Equation 24 may be 
derived from Mileiko's theory [/9]. Assuming that 
the true stress-strain curve is expressed in the 
form 

o = F(e) n, (25) 

where F is a constant, and assuming that the 
expression of Equation 25 is valid beyond efu for 
the fibre, the normal stress of  the composite 

n at any e is given by Oc 

~ = {Yt(e)"w~ + Fro(& m VmJ exp (-- e). 
(26) 

Differentiating Equation 26 with respect to e, 
and setting don]de = 0, we have the strain at the 
maximum loading eeu, 

d(~ e=%u = 0 

= nfF~Vt(ecu)'~f -1 + nmFmV~(e~)'~m -1 

- -  Ff Vt(ecu) nf -- F m Vm (%u) nm. (27) 

Substituting F~(ec,)"~ = (of)e=e~u and Fm(%u) "ra 
= (om)e=ec u into Equation 27, we have Equation 
28 which is the same as Equation 24, 

eeu = nfo~ + nra(1 -- a) (28) 

where 

Mileiko assumed in his theory that the strength 
of the fibre-matrix interface was sufficient to 
prevent the fibre necking. However, the assumption 
was not introduced into his mathematical pro- 
cedure. The assumption used in his mathematical 
procedure was that the embedded fibre deforms 
uniformly beyond el ,  in the composite. Compar. 
ing the present result with Mileiko's theory, we 
can say that his theory is valid if the embedded 
fibre undergoes apparently uniform elongation 
whether the interfacial bonding is strong or weak. 

It should be noted that, in general, it is not 
possible to express the stress-strain curve exactly 
for the whole deformation range by the simple 



form as in Equation 25, and in some cases, n 
varies during deformation and does not correctly 
correspond to necking strain. For such a case, 
further investigation should be carried out. 

5, Conclusions 
The embedded fibre in copper matrix composites 
prepared by a plating method was elongated 
apparently uniformly although the interface was 
so weak that the necking in the fibre seemed 
unable to be suppressed by the matrix. To account 
for this result, a new instability approach was 
presented to the tensile behaviour of the com- 
posite. From the present approach, it was pre- 
dicted that the stability of the composite is deter- 
mined mainly by the strain-hardening exponent 
of the composite as a whole, which is determined 
by the modified rule of mixtures. The prediction 
was verified experimentally. The present derived 
condition of the instability of the composite is 
in good agreement with that proposed by Mileiko. 
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